Cognitive Science v Neuroscience: ‘priming’ – could it change how we teach?

Photo by Skylar Kang on Pexels.com

Recently, @TeacherTapp recommended our blog titled: ‘Cognitive Science v Neuroscience: retrieval at the start of a lesson or not?‘ based on research in a neuroscience paper on how memory is formed and it has produced quite a strong, but positive reaction. Experienced and new teachers alike have said how the key process of ‘priming‘, a process of how memory formation happens ready for retrieval or constructing new knowledge or skill (a process which we established in our blog), resonates with their experiences and indeed CPD offered by many in education. It changes the debate around memory, the formation of it and how we approach education – if we believe that we can appropriate ideas from both cognitive science and neuroscience into education (note the many limitations with doing exactly that). This further blog aims to revisit key aspects of educational ideas and policies which are reliant on the notion of how memory is formed through this new lens of priming. It must be said that this blog is theoretical speculation and is done to give you some scope of where we will be looking to research the concept of priming and to explore if there is evidence to support this idea.

Enjoying this blog? Please consider tweeting it out to help share the knowledge in our community.

The immediate response from the original blog was that interleaved retrieval practice could have more limitations than we first thought. For example, doing interleaved retrieval practice at the start of a lesson in which the retrieved schema is not going to be used in the lesson would be working with the wrong memory cells (containing the schema) if we follow the neuroscience research outcomes. Instead of readying the reformulated architecture or strengthening the memory cells for the lesson, it is readying unrelated memory cells that do not have reformulated architecture ready for gene expression. In other words, the start of a lesson isn’t the right place for interleaved retrieval practice. The good news is that online asynchronous learning has been accelerated in its development and uptake over the last year thanks to the reduction in the number of children going to schools during so called ‘lockdowns’ (schools never closed(!!)). Interleaved retrieval practice therefore could still have a place online and asynchronously. However, the practice would need to change from being cold retrieval practice to a two step process of warm reactivation and then retrieval practice. This could be achieved, for example, through undertaking reflection, watching a short video, viewing some modelling or perhaps writing out a non-assessed overview e.g. a synopsis of a play. There are clearly implications here for how online learning is constructed and so that area is something to revisit separately. Further, the gap in time between revisiting learning and the way we revisit learning is affected. Too soon and the cells have not reformulated their architecture ready for expression of the arc gene. Too late and with no priming then no expression of the arc gene takes place.

There are further areas where our ideas about memory are predicated in policy and practice. Take, for example, the notion that ‘learning is a change in long term memory’. This is a prevalent idea found in the OFSTED research framework and the OFSTED inspection handbook which talks about teachers ensuring that pupils ’embed key concepts…and apply them fluently’ (p.44) as well as ‘transfer key knowledge to long term memory’ (ibid). These ideas are now in the Core Curriculum Framework (CCF) for trainee teachers upon which the Early Career Framework (ECF) is founded and also the NPQ suite of qualifications (for first teaching 2021 onwards) have been built. The CCF and the NPQ suite of qualifications sets out ideas such as ‘…committing some key facts to their long-term memory is likely to help pupils learn more complex ideas.’ (p.11) and very importantly, ‘Requiring pupils to retrieve information from memory, and spacing practice so that pupils revisit ideas after a gap are also likely to strengthen recall’ (p.12). All of this language is clearly from ideas that have emerged through cognitive science. The fundamental ideas here stems from the paper from Kirchner, Sweller and Clark which focuses on the concept of working memory and the limitations of asking working memory to learn or problem solve without prior instruction (discovery learning). The neuroscience model of memory formation adds to this language and enables us to revisit some of these core concepts. Memory, according to the research in the neuroscience paper cited at the start of this article, is formed through expression of the arc gene. By controlling the priming process large increases in gene expression can be produced at the points of memory formation which leads to enhanced remembering. Why this process has evolved is unclear, but a workable analogy is that memory can be used as almost an immune response to threats (retrieval and/or problem solving/constructing new knowledge or skill (creativity?)). Problem solving, we could theorise then, requires a series of processes to be successful. An initial activation event, a period of time, and then a warm reactivation event in which both retrieval and construction of knowledge happen simultaneously – there would be initial activation and expression of the arc gene happening simultaneously. The key concept is that remembering works like an immune response to a threat. How strong that response is relies on the original gene expression at the point of memory formation. To respond to this threat requires both strong retrieval and constructivist thinking. If the memory has not been strengthened by expression of the arc gene prior to retrieval then the resultant retrieval will be weaker than if the full priming process had been used. Further, if you are undertaking retrieval practice to strengthen the memory (in cognitive science words, to put knowledge into long term memory) then cold retrieval practice does not necessarily lead to the expression of the arc gene necessary for a subsequent strengthening of the memory. Cold problem solving, cold questioning, cold retrieval practice; all these do not fit with the neuroscience evidence of how memory cells are strengthened (memory formation with gene expression) or used effectively to deal with the subsequent activities which rely on memory (remembering). I suppose it’s a little like the athlete who spends time visualising and reflecting prior to an event – in effect, getting themselves ready ahead of the event (threat) following winter training. Controlling the priming process enhances both the remembering (what to do) alongside the constructivist problem solving (how to resolve an unexpected threat). What ‘learning’ is then, if we follow this train of thought, is not necessarily ‘a change in long term memory’ – long term memory is not a static schema that remains the same. You learn it and then you strengthen it ready for future use. You then also are aware of the priming process for its use at a point in the future. Retrieval practice alone, then, does not strengthen as effectively as memory which has been formed through a priming process. The memories therefore require the full priming process if they are to be strengthened and in order to be able to work at peak effect at some unknown point in the future. Memory can wane just like your immune system can wane. Yet, given the right priming it can be ready to retrieve and problem solve a threat a long time after the original learning and priming process actually strengthened the gene expression.

At a visual level, imagine that there are ten cells. One becomes populated with memory through the initial activation, but no reactivation through a process of priming. Through conditioning (retrieval practice), you can make the one cell very efficient at producing the memory at will to a specific stimulus. Imagine now that controlling priming to enhance gene expression (the arc gene which is associated with memory) brings 9 more cells into play. The memory now sits in ten cells and thus the original formation was much stronger. The resultant remembering is supercharged and thus is able to be used more effectively within future learning opportunities. It also requires less future retrieval practice conditioning. Indeed, the science says that subsequent revisits to the memory are not having the same impact on the expression of the arc gene as the second encounter with the learning. That second encounter and how it happens is where the majority of gene expression is happening.

Learning, then, happens as part of a process. New knowledge is constructed into pre-existing knowledge but then needs to go through a priming process to be expressed in the form of the arc gene. The whole priming process is essential as this is what causes the amplification of expression of the arc gene to happen. Although the whole process is important, the ‘learning as a change in long term memory’, if defined by gene expression, is happening predominantly during the reactivation event. But alone, it is insufficient: it needs to be taught, a period of time allowed, warmly reactivated and then it is ready for strong remembering for ‘threats’. Those threats should be both retrieval (known threat) and constructivist retrieval (unknown threat). In short, it is a moving sequence vulnerable to time delays and cold threats rather than a static schema which sits in the long term memory.

What does this look like at the level of lesson or learning episode? Well it begins to adapt some of the pedagogical tools we use – in particular formative and summative assessment (threats) as well problem solving or creativity and the length of time between the initial encounter with learning and when and how it is revisited. A first teaching should be followed by a period of time to allow for cell reformulation . The warm reactivation becomes the super important event. It suggests that before introducing a ‘threat’ during the revisiting for the second time – whether that be Year 1 painting in primary school or leading a Q&A session in English, you would undertake a non-threatening priming activity as a pre-activity. Not low stakes retrieval practice, but low stakes warm reactivation. To be very honest, this is not wholly new – doing a pre-questioning session to make a Q&A session better than a cold Q&A session is something teachers already do. Questions like ‘Do you like Lady Macbeth?’ would be a clear warm reactivation question. There isn’t any right answer, but the cells containing the memories would be readied. If asked later on for Lady Macbeth quotations the pupil’s memory cells would retrieve these successfully and also this would lead to expression of the arc gene. This is a reversal of what is currently happening.

I suppose at this point we begin to reflect on cold assessment. Every teacher knows that cold assessment is never as successful as assessment where the learning has been warmly reactivated first. It makes us consider if our wholly cold national assessment system is an accurate way to measure learning amongst children as well as the quality of teaching in schools. It would be interesting to see what effect controlling priming would have on large scale assessment systems such as mock examinations. Warm reactivation before mock examinations could be more effective at strengthening memory that simply delivering cold mock examinations. There is something to be said there about how a teacher knows better what a student’s knowledge or skill is like because they see the student in operation when they are primed rather than in the cold examination hall. It possibly also explains how a student can prime themselves more effectively for an exam than they ever did in class and thus score more effectively in the cold formal exam than they did at school (e.g. in a mock examination where they were not primed nor motivated to prime themselves).

Another area worth revisiting is Rosenshine’s Principles of Instruction. Here we see the idea that we should be reteaching that which has not been retrieved accurately. However, if the reason that the retrieval was unsuccessful was that there was weak memory formation then this reteaching could be simply relaying down foundational knowledge rather than creating the priming process for expression of the arc gene needed for a stronger future remembering. With the idea that memories can get better at responding to threats (retrievals) by being warmly reactivated first and then exposed to the threat, simply retrieving at the start is not the right idea. Indeed, one of Rosenshine’s key principles ‘…the review at the start of the lesson…’ (Rosenshine, 1982, p.8), is very nearly there. It’s just been conflated with contemporary ideas of retrieval practice and sometimes reduced to cold quizzes at the start of a lesson – further more, not enough attention has been paid to whether it is a second revisiting and how much time has lapsed between the initial encounter with the learning and the second revisiting.

It’s important to think about how we could further support children with learning difficulties through priming. By offering CPD to support teaching assistants in the theory of priming they could better understand just how important theories such as Porges’ work on the Automatic Nervous System (ANS). In his modelling, some learners who have had adverse childhood experiences (which could well include negative school experiences due to early issues with learning needs) have amplified ANS responses. In other words, when faced with ‘cold’ unprimed ‘threats’ (cold questioning, cold retrieval practice, examinations, etc.) some children respond with ANS driven fight or flight responses. By introducing warm reactivation ahead of such situations, support assistants could modify the ANS response, reduce behaviour-led responses and increase successful retrieval and construction of new knowledge or skills. Those with SEND can also have higher absence rates or simply have insufficient adaption in a lesson – this could affect the priming process: the initial event, the period of reformulation and then the expression of the arc gene are all susceptible to absences or issues with access to learning (barriers to learning).

I’m sure we could go on, but it is worth thinking about how enshrined our ideas about memory are into the way we train teachers, leaders, inspect schools and so forth. The new ideas from neuroscience both complements some of these ideas and challenges them, but also refines the language as well as lends criticality to the way we understand the processes. However, it does need a jolt of reality. Much of this is theorising and it is important always to be critical of everything we meet in education – every idea in education, after all, has limitations.

We have launched a two phase project to investigate the concept of priming and enhancing the formation of memory using these ideas. If you are interested in being part of the research, as either a teacher or a school, and would like to be involved in this or any other research projects then drop me an email at james.shea@beds.ac.uk or you can find me on Twitter at @englishspecial.

Dr James Shea, Senior Lecturer in Teacher Education

Copyright © 2021. James Shea. All rights reserved

Tables in the classroom good. Tables facing the front better

 

You see it all the time, some edutweeters responding to an edutwitter discussion about how to teach with a self-defined single model version of teaching: ‘All desks facing the front, teacher at the front.’

And let me start by saying that there is a lot of truth in that particular model. If I have them in groups and then ask them to listen whilst I am giving instructions or doing a similar teacher led activity then I’m just asking for them to not pay attention. You can call it whatever you want, but sometimes it really does work if I have them all facing me when I am teaching.

However, once I’ve completed that learning event and moved on, then I need to consider what the best room layout is for the next learning event. I can’t have one model of desk layout always employed regardless of the activity.  If I was then doing an activity with group work, allocating different roles and they had to work effectively as a team, then I don’t want all the desks giving them physical barriers to represent their internal ones. They are going to have to learn how to collaborate because that’s pretty much what it means to be a citizen in a society – in work, rest and play. That’s why PISA are testing it and why we are good at it. Covid19 will naturally affect this, but the reality is that we will slowly return to working collaboratively in groups within our classrooms.

So, I want to move the desks. Sometimes I move the desks into group tables. Sometimes, I reduce the number the tables in play by only giving a group a single table around which they have to sit. More room for the sitting part & my circulation and more intimacy for the group work – there must not be hiding room in good group work. Too often, we give them a tiny working area for close text or number analysis sat on an island of tables and mini-cliques can quickly emerge which render the group work a poor vehicle for learning. And then here is the important part, if I then moved to another teacher-led learning event I would move the tables again. Only, I would not do this personally – the pupils would be trained to move those tables on my direction, lift – not drag, in a display of co-ordinated table movement, rather like when one turns the dial on a prism viewfinder. I like teaching with plural models of teaching and I like teaching with plural models of desk layouts.

My tables are moved then, habitually, to suit the activity. Whole room clearance for drama pedagogy, Socratic questioning circles, work performance review, partial clearance for group activities and then back to formal rows for teacher-led and the opening and closing of my lesson. It sounds a lot, but in reality there might be 2-3 minor movements in a single lesson. Each movement of tables is an aesthetic display of coordinated memorised room shaping by the pupils. Once I had trained them into creating the half dozen table layout shapes I employed over the year they had no problem in creating them at speed. If you buy into Sweller’s cognitive load like many do, then you should be buying into creating the optimum environment for each activity in your room, each and every time without any disruption. You should also be thinking about the limitations for any model of education in any particular situation with any group of people in a place of education. And you should be thinking about the limitations of always advocating a single model of teaching or education to others. Dichotomy in Edutwitter is a real issue and a red herring. You reduce teacher agency with educational dichotomies. Let well trained teachers choose how to teach each unique class that they have.

This plural approach to teaching models is the real demonstration of how teachers teach – adapting their classrooms for maximum learning.

 

 

 

Lockdown Learning for Schools in September

red and white signage
Photo by Anna Shvets on Pexels.com

When the lockdown came for us in teacher education here at UOB towers, it was like we had been building up to this, technologically, for some time. Little did we realise it, but the past two years that we had been piloting webinars, developing online teaching pedagogies and moving face to face delivery to online delivery were going to become very relevant. The reason we were developing this was quite simple: mentors having to drive a long distance to mentor development face to face sessions were delighted to sit and have a webinar from home instead with a cup of tea beside them and with no commuting. We had just started to experiment using the flexibilities offered by this technology with some of our trainees when the university shut its doors for COVID19 and our entire programme, overnight, moved online. The same content got taught at the time it was scheduled. Live and exceptionally well attended webinars replaced face to face sessions and it was as seamless as switch as you could imagine. From the trainees’ end, this was a bit of a shock (they relied on the physical library more than I thought), but to their credit they have been very resilient despite the challenges of losing physical interaction with their peers and tutors as well as a change in approach to teaching. No matter what we try to do as tutors, we cannot replicate the live synchronous and emotive experience of learning that happened in the physical classroom (I am from the reader response school of thought) and I think we all see the online version as an inferior substitute to the real thing. Though, to be fair to online live webinars, there are some sessions which have proved to better suited to webinars – ‘preparation for assignment’ type seminars where thinking time, intense question and answer sessions and the ability to record everything have proved to be a superior model.

We are fortunate in our School of Teacher Education to have well designed Virtual Learning Environment technology underpinning our delivery. Technology that was designed and used to deliver taught and assessed units within courses (as opposed to Zoom etc., being designed for business). The students, as I said, overnight, have remained enrolled in units, enrolled on courses and ‘attending’ designated sessions as timetabled. The staff are teaching as much as they ever were and apart from some tricky assessment modifications we’ve by and large ensured that the trainees have had a smooth transition in terms of academic input. This shows that we are benefiting from the level of technological infrastructure in homes, with trainees and with the university. Indeed, business and charities are in a similar position – the flexibility of technology has enabled us all to deploy social distancing as a strategy to push back against the R rate.

Thinking about schools now, it is clear that the way forward will be an adherence to the current rule no unnecessary close social interactions. If you can work from home or learn from home using the flexibility of technology you should and alternatively if you can run your business or attend somewhere with social distancing then you can do that. That’s the way the UK has chosen to keep R down (there are other models: Sweden, South Korea and so forth). Some people have to go to a workplace and more people will go back to a workplace as they open up with social distancing in place, but some people can continue to work from home. The same doesn’t quite apply to pupils in schools. Most pupils will have to go to school and be taught via traditional pedagogies by teachers in face to face sessions for some of the time if not all of the time. In the classrooms, social distancing  can and will have to be practiced (due to smaller numbers in school through rota systems). Some pupils will learn online effectively, because they have the environment and technology to do so. Some pupils who could stay at home will go to school because they don’t have the learning environment to learn from home. Those pupils who can learn from home will be taught by teachers using online pedagogies to supplement the face to face teaching. Teachers and schools from September will need to be able to teach face to face and to teach online. What teachers and schools are doing, on behalf of the government, is deploying the flexibility offered by technology to reduce social interactions. It could be that once the R rate comes down and test and trace becomes much better in terms of its success rate that the government will switch to an approach where social interaction is not so heavily repressed, but until we see the infection rate come down and the test and trace capacity increase we have to think about logistics based on current approaches.

My job as a course leader of teacher education is to ensure that the teachers coming in can teach online as well as face to face. We are already doing this for the outgoing cohort. They would normally have run a face to face ResearchEd style conference to finish the course. This year, they will run that conference as an online conference. Live webinars will replace the keynotes and the breakout presentations. They will put on an entire day of live webinar based learning for each other. We are already looking to enhance next year’s cohort’s knowledge of TEAMS and so forth as part of our planning.

When I look to the future (as someone who has written frequently about technology in education), I can see that blended learning is about to become a reality for everyone. You can have social distancing in schools because you must – for those who will attend school. You can have live teaching online because you must – for those who can study from home for some of the time. I know that live webinars are not as good as face to face sessions, but that’s not the important part right now. What’s important is to keep unnecessary social interactions to a minimum whilst maximising safeguarding and education.  There will be regional variations as well – schools and parents in an area seeing a rise in transmission could expect to be placed back on extensive lockdown. Teachers will be, for next year at least, waiting for the COVID19 phone call as opposed to the OFSTED call.